
IOI 2017 Tehran, Iran

Task: Library
Daniel Graf grafdan@ethz.ch

1 Task Description

The city of Tehran is home to the National Library of Iran. With over 90’000 square meters of
space, it is one of the largest library campuses in the Middle East1.

So far, all the books were ordered by language and then sorted alphabetically within each lan-
guage. Mina, who is managing the library and is fluent in many di↵erent languages, decided that
she prefers it if the books were sorted alphabetically across all languages. She already computed
how the books would need to be reordered, and now she wants to sort the books as quickly as
possible.

The library consists of a single bookshelf that is a line of N equally spaced slots. The slots are
numbered from left to right from 0 to N � 1. Each slot can hold a single book, so there are N
books in total. Mina initially stands in front of slot S and can never carry more than one book
at a time. Moving from one slot to the next slot on the left or on to the right takes Mina one
second. Mina can not move past the leftmost or rightmost slot.

When standing in front of a slot, she can pick up the book in it (assuming the slot is not empty).
If she was already carrying a book, she could swap it with the book in the slot. If there is no book
in the slot, she can put down the book she was carrying. All of this happens instantaneously;
and of course, she can also do nothing and continue carrying the same book or continue empty-
handed. The only thing that takes time is movement. It is fine if Mina picks up the same book
multiple times during this sorting process. In the end, Mina wants to be back at slot S.

Your task is given the starting sequence of the books and the slot Mina stands in front of to find
the smallest number of seconds Mina needs to sort all the books and then return to her initial
position.

1.1 Example

In this example, we have N = 5 and Mina starts at slot S = 0. The books are called A, B, C, D, E
and are initially ordered CABED. One of the optimal solutions is shown in the picture. Mina first
takes book C and moves it to slot 3 where she swaps it for book E. She can then bring book E to
slot 4, book D to slot 3, book C to slot 2, book B to slot 1 and finally book A to slot 0. This trip
takes her 8 seconds, and there is no way to do it any faster.

1
according to https://en.wikipedia.org/wiki/National_Library_of_Iran

1-1

0 1 2 3 4

C A B E D

0 1 2 3 4

A B E DC

0 1 2 3 4

A B DC E

0 1 2 3 4

A B C ED

0 1 2 3 4

A BC ED

0 1 2 3 4

AB C ED

0 1 2 3 4

A B C ED

0 1 2 3 4

A B E DC

0 1 2 3 4

A B E DC
0s

3s

6s

1s

4s

7s

2s

5s

8s

1.2 Task

You are given N , S and the order in which the books are initially placed. Compute the smallest
number of seconds Mina needs to sort all the books and return to slot S. You need to implement
the function booksort:

· booksort(N,S,order) – This function will be called by the grader exactly once.

– N: the number of slots and number of books

– S: the slot where Mina starts from

– order: an array of length N . order[0], . . . , order[N-1] give the initial order of
the books, where the books are numbered from 0 to N � 1 in alphabetic order. This
means that the book initially placed at slot i should end up at slot order[i].

– The function should return the smallest number of seconds in which Mina can complete
her task.

1.3 Subtasks

subtask points N S

1 10 1 6 N 6 4 S = 0
2 10 1 6 N 6 7 S = 0
3 15 1 6 N 6 10000 S = 0
4 15 1 6 N 6 100000000 S = 0
5 20 1 6 N 6 10000 0 6 S < N
6 30 1 6 N 6 1000000 0 6 S < N

1.3.1 Sample grader

The sample grader reads the input in the following format:

· line 1: N S

· line 2: order[0] . . . order[N-1]

The sample grader prints the return value of booksort.

1-2

2 Description of Desired Solutions

2.1 Easy subtasks (subtasks 1 and 2)

The first subtask, where there are at most 4 books in the library, can easily be solved by hand.
There are only 1!+ 2!+ 3!+4! = 33 possible inputs and so they can all be precomputed by hand
simulating the process with pen and paper.

The second subtask allows a brute force state exploration. We can take the triple (state of the
shelf, Minas position, Minas current book) as the state in a breadth-first search. This state space
is roughly of size (N + 1)! ·N and so for N 6 7 we can still find the shortest path to the sorted
state fast enough. See library 20.cpp for an implementation.

2.2 Medium subtask (start/end on the very left)

To compute the number of steps (=seconds) needed without actually simulating the entire sorting
process, we need a couple of observations:

Balancing property Across every edge of the underlying path graph, Mina will walk equally
often from the left to the right as she walks from the right to the left. A similar balance also
applies to the books. For every edge of the path, there are equally many books that need to be
moved from the left to the right as there are from the right to the left.

Cycles of the permutation The array order specifies a permutation. We will denote that
permutation by ⇡ from here on. We will see, that the answer only depends on how ⇡ partitions
the set of slots {0, . . . , n � 1} into disjoint cycles. A book that is placed correctly from the
beginning, we call trivial. Their corresponding trivial cycles (cycles of length one) can almost be
ignored, as we will always just move past them.

Single cycle If ⇡ consists of a single cycle then the answer is easy to find: Mina can grab the
book at S, bring it to ⇡(S), take the book from there to ⇡(⇡(S)) and so on until she returns to
S. [Here is a video illustrating this.] As she brings one book on slot closer to its target position
in every step, her walk surely is optimal. We can compute this number of steps by

d(⇡) =
n�1X

i=0

|i� ⇡(i)|

which is exactly the sum of the distances between initial and target position of every book.

0 1 2 3

Lower bound d(⇡) The sum of distances d(⇡) is a lower bound on the answer even if ⇡ consists
of multiple cycles. We distinguish two kinds of steps for Mina: A step is called essential if Mina
brings one book one step closer to its target position than this book ever was before. Otherwise,
the step is called non-essential. Every way of sorting the books consists of exactly d(⇡) many
essential steps. The number of non-essential steps needed depends on how the cycles of ⇡ overlap.

1-3

Two cycles Every cycle of ⇡ covers some interval I of the bookshelf which extends from the
leftmost book to the rightmost book that is part of this cycle. We have I ✓ [0, n� 1], where we
use [i, j] as a shorthand for {i, i+ 1, . . . , j � 1, j}. Let ⇡ consist of exactly two non-trivial cycles
C1 and C2 with their respective intervals I1, I2 and let S = 0 wit S 2 C1. Then the answer only
depends on whether the cycles overlap (I1 \ I2 6= ;) or not. If they overlap, the answer is d(⇡)
otherwise it is d(⇡) + 2.

Why? If they overlap, Mina can sort along C1 until she encounters the first book belonging to
C2. She then leaves the book she was carrying at that slot to fully sort C2 and return to the
same slot. She can then pick up that book again and finish sorting C1 without ever spending a
non-essential step.

0 1 2 3 4

If the two cycles do not overlap (so C1 is entirely to the left of C2), Mina can do something
similar. She starts sorting C1 until she encounters the rightmost slot belonging to C1. She then
takes the book from there and non-essentially walks with one step to the right to the leftmost
slot of C2. There, she sorts C2 and picks up the same book again to non-essentially walk back
to C1. Finally, she finishes sorting C1 and returns to S. This is optimal since the only two
non-essential steps of Mina’s walk are spent across an edge that no book needs to cross but has
to be crossed by Mina eventually as there are non-trivial books on both sides. [Here is a video
illustrating this.]

0 1 2 3 4

Multiple cycles The two cases from above generalize to the case where ⇡ consists of many
cycles. Any two overlapping cycles can be interleaved without non-essential steps, and Mina has
to spend two non-essential steps across every edge that no book needs to cross, but where there
are some non-trivial books or S on both sides of the edge. [Here is a video illustrating this.]
More formally, let E0 be the subset of the edges of the path with the following property:

e = (i, i+ 1) 2 E0 , no book has to cross e and

some book to the left of e is non-trivial or at S and

some book to the right of e is non-trivial or at S and

,((@j 2 [0, i] : ⇡(j) > i+ 1) ^ (@j 2 [i+ 1, n� 1] : ⇡(j) 6 i)) and

(9l 2 [0, i] s.t. (l 6= ⇡(l) _ l = S)) and

(9r 2 [i+ 1, n� 1] s.t. (r 6= ⇡(r) _ r = S))

If S = 0, these are all the non-essential steps needed, so the answer is d(⇡) + 2 · |E0|.

Implementation With these observations, it is easy to compute both d(⇡) and |E0|. If it is
done in quadratic time (e.g., by just checking the above conditions for E0 by looping over all
indices for every edge), this will solve subtask 3 (see library 35.cpp for an implementation).
However, it is not hard to compute E0 in linear time (e.g., in a scanline fashion from left to right),
which will then score for the first four subtasks (see library 50.cpp for an implementation).

2.3 Harder subtasks (with S 6= 0)

If Mina does start somewhere in the middle of the shelf, we might need some additional non-
essential steps across edges not in E0. It is not obvious whether Mina should first go to the left

1-4

or to the right, as there might be non-trivial books on both sides.

S

We could try out both options and define the following subproblem:

How many non-essential steps do we need, if we already know how to connect all the
cycles in the interval [l, r] with S 2 [l, r]?

This gives rise to a dynamic programming formulation with a state of quadratic size (all intervals
containing S).

For any given interval, we define the function extend(l, r) with [l0, r0] = extend(l, r) being the
largest part of the shelf that we can sort without spending any additional non-essential steps. So
extend has to repeatedly add all cycles C whose interval I partially or fully overlap with [l, r]
and then continue with [l, r] := [l, r] [I until no more cycles can extend the interval.

Once there is no other overlapping cycle (so [l, r] = extend(l, r)), we are either done or we
know that we have to spend some non-essential steps. Let combine(l, r) be the function that
computes the cost of connecting all cycles to the interval [l, r]. We can recursively compute it
using combine(l, r) = 2 +min(combine(l � 1, r), combine(l, r + 1)). We need to take care of the
border cases (when l � 1 or r + 1 are outside the shelf) and initialize it with combine(l0, r0) = 0
for [l0, r0] being the smallest interval that contains all non-trivial books and S.

By implementing extend carefully, we can achieve an amortized constant time complexity across
all calls, so that the dynamic program runs in quadratic time overall. The code in the file
library 70.cpp implements this using memoization. Note that for S = 0, the set of states is
only of linear size, so this solution also passes subtask 4.

To solve the problem in linear time, we note that we can decide whether to go left or right
somewhat locally without exploring quadratically many states. If [l, r] is some extended interval
([l, r] = extend(l, r)), we look for two special cycles Cl and Cr. Cl is the first S-containing2

cycle that we encounter when walking from l to the left. Similarly, Cr is the first S-containing
cycle when walking from r to the right.

Let cl be the cost of reaching Cl from l (and define cr). Note that cl is not just twice the distance
between l and the closest book of Cl as there might be some small cycles along the way that help
us save some non-essential steps. But we can compute cl quickly by solving the (S = 0)-problem
between l and the first box of Cl.

Observe that if Cl does not exist, Cr does also not exist (as [l, r] is maximally extended, the book
of Cl to right of S also has to be to the right of r and vice versa). Also note that once we reach
either Cl or Cr, we also reach Cl [Cr and therefore get extend(Cl [Cr) without any further
cost. This means that we can greadily decide for the cheaper of the two sides (of cost min(cl, cr))
and then continue with the interval extend(Cl [Cr) regardless of whether we decided to go left
or right.

Finally, one has to take care of the border region, everything outside of the outermost S-
containing cycles (so once Cl and/or Cr no longer exist). But this is easy, as this is just another
(S = 0)-case on each side.

2
A cycle C with interval I is S-containing if and only if S 2 I.

1-5

We can answer all the extend(l, r) calls and compute all the cl and cr costs using only one overall
sweep over the shelf (if we precompute the cycle of each shelf and the interval of each cycle, which
we can also do in O(n)). Therefore, we can find determine the answer d(⇡) + combine(S, S) in
linear time. The code in the file library 100.cpp implements this optimal solution.

2.4 Almost correct solutions

One thing a contestant might overlook is that the answer can be of the order ⇥(n2) and therefore
does not necessarily fit into a 32-bit integer. This causes an overflow in subtasks 4 and 6.

Other submissions might consider only near optimal sorting walks. Some might also visit all the
trivial books at the ends of the paths, even though there is nothing to sort there. Others might
just traverse the path once without carrying any book and then sort every cycle individually
along the way without interleaving anything and hence spend 2n � 2 many non-essential steps.
Both of these would result in non-optimal answers.

2.5 Overview

To summarize, here are the solution techniques listed per subtask:

subtask points technique

1 10 pen and paper
2 10 state exploration, BFS
3 15 ad hoc
4 15 ad hoc
5 20 dynamic programming
6 30 ad hoc / greedy

1-6

3 Test Data Generation

I can see two challenges when creating test sets for this task:

· The worst case running time of O(n2) of the dynamic programming solution for subtask 5
is only achieved for certain permutations with a clever nesting of the cycles.

· Some o↵-by-one-bugs might not immediately result in a wrong answer if in the particular
test cases they just happen to occur along edges that do not need any non-essential steps.

4 Background Information

4.1 Author Information

· Author: Daniel Graf, daniel@soi.ch

· A�liation: PhD student at Department of Computer Science at ETH Zürich

· Olympiad-Role: president of the Swiss Olympiad in Informatics (2011-2016),
IOI participant for Switzerland 2009 (bronze medal),
IOI team leader for Switzerland 2012, 2014, 2015, 2016,
ACM ICPC participant at SWERC 2011, 2013, 2014 and World Finals 2014 and 2015

4.2 Task Background

This task came up as part of my Master thesis during summer 2015 where I looked at scheduling
and sorting algorithms for robotic warehouses, specifically a robot system for automatic bicycle
parking called BikeLoft.

The story is basically that a robot manages a set of boxes that can each hold a single bicycle and
can be stored along a path of n slots. At one end of the path there is a door where customers
can bring and pick up their bicycles. [Here is a video illustrating this.] [And here is video
documentary about the actual prototype of the system.]

Algorithmic scheduling questions arose along the lines of: ”Where should the robot put a certain
box if he knows that this customer arrives in five minutes?”, ”How can the robot keep enough
empty boxes near the door to be ready quickly when a new customer wants to store his bike?”.
The sorting aspect came from the assumption that for typical bike parking (e.g., at a train
station) most people bring their bike in the morning and reclaim it in the evening. Hence, you
might be able to compute the optimal reordering that you should do over lunch to be ready for
the evening. How long does the robot need to perform this optimal reordering over lunch? [Here
another video illustrating this bicycle sorting.]

I then studied and solved this sorting problem of labeled tokens on a graph for the case where
the underlying graph is a path, a cycle or a tree and I showed that it is NP-hard for general
planar graphs.

Here are some links to what I did as part of my thesis:

· Master thesis writeup and presentation slides

· ESA 2015 publication about sorting on paths and trees [3] and presentation slides

· Implementation and visualization of the solution on paths and trees

· Algorithmica 2017 publication that includes the linear time algorithm (Theorem 3) [4]

1-7

These writeups also study sorting on cycles and on trees which is not part of the task. My algo-
rithm on trees runs in ⇥(n2) and relies on Edmond’s algorithm for minimum directed spanning
trees aka optimum branchings (which is outside of the IOI syllabus).

As far as I am aware, this task has never appeared at a programming competition. The closest
related problem that I could find is the task Boxes/Kutije from the Croatian National Com-
petition in Informatics in 2006 which is available in Croatian [here] and I have discussed in
Section 3.4.3 of my thesis.

The task Baggage from ICPC World Final 2014 has a similar setting, but the details (sorting
2n black-and-white-alternating marbles while always moving two neighboring marbles at once)
make the solution totally di↵erent. I refer to Section 3.4.4 of my thesis for detailed discussion.

The task Boxes from IOI 2015 is quite similar in the way the problem is phrased (with the graph
being a cycle instead of a path and with the server having a capacity bigger than one). But
again, the actual problem and solution are substantially di↵erent in my opinion.

Very similar theoretical results where known already since the 1980s. This paper [1] [Link] by
Atallah and Kosaraju solves the problem on paths and cycles in linear time (but the implemen-
tation would be more intricate as the path is just a special case of an elaborate solution to the
cycle). Another series of papers by Frederickson and Guan, most importantly in [2] [Link], solves
the problem on trees in time O(n log n). I refer to Section 6 of [4] [Link] for a detailed discussion.
However, I could not find anything on anyone ever implementing any of these solutions.

The feedback to the submission of this task to IOI 2016 mentioned that the tree version of this
problem was recently used in an opencup.ru contest however asking for slower running times.

References

[1] Mikhail J Atallah and S Rao Kosaraju. E�cient solutions to some transportation problems
with applications to minimizing robot arm travel. SIAM Journal on Computing, 17(5):849–
869, 1988.

[2] Greg N Frederickson and DJ Guan. Ensemble motion planning in trees. In Foundations of
Computer Science, 1989., 30th Annual Symposium on, pages 66–71. IEEE, 1989.

[3] Daniel Graf. How to sort by walking on a tree. In Algorithms–ESA 2015, pages 643–655.
Springer, 2015.

[4] Daniel Graf. How to sort by walking and swapping on paths and trees. Algorithmica, pages
1–31, 2017.

1-8

5 Sample Implementations

5.1 Easy subtasks (subtasks 1 and 2): State exploration with BFS

1 // Library solution for S=0 in O((N+2)!)

2 // Score: 20

3 // Use BFS over the entire state space

4

5 #inc lude ” l i b r a r y . h”

6 #inc lude <vector>
7 #inc lude <queue>
8 #inc lude <map>
9 #inc lude <iostream>

10

11 using namespace std ;

12

13 struct s t a t e {
14 int p ; // Minas position

15 int b ; // Minas current book

16 vector<int> s ; // shelf

17 bool operator < (const s t a t e &o) const {
18 if (p != o . p) return p<o . p ;

19 if (b != o . b) return b<o . b ;

20 return s<o . s ;

21 }
22 bool operator == (const s t a t e &o) const {
23 return ! (⇤ this < o) && ! (o < ⇤this) ;

24 }
25 void pr in t () const {
26 cout << "state: p=" << p << " b=" << b << " s=[" ;

27 for (int i =0; i<s . s i z e () ; i++) {
28 if (i >0) cout << "," ;

29 cout << s [i] ;

30 }
31 cout << "] " ;

32 }
33 } ;
34

35 long long int booksort (int N, int S , vector<int> order) {
36 // BFS over the state space

37 map<s ta te , int> M; // Distance map for discovered states

38 queue<s ta te> Q; // BFS queue

39

40 vector<int> i n i t i a l (N) ;

41 for (int i =0; i<N; i++) i n i t i a l [i]= order [i] ;

42 s t a t e s t a r t = {0 , �1, i n i t i a l } ;
43

44 vector<int> so r t ed (N) ;

45 for (int i =0; i<N; i++) so r t ed [i]= i ;

46 s t a t e t a r g e t = {0 , �1, so r t ed } ;
47

48 if (s t a r t==ta rg e t) return 0 ;

49

50 M[s t a r t] = 0 ;

51 Q. push (s t a r t) ;

52

53 while (!Q. empty ()) {
54 s t a t e s = Q. f r on t () ; Q. pop () ;

55 vector<s ta te> succ ;

56 // generate all possible successor states

1-9

57 s t a t e ns = s ;

58 for (ns . p = s . p�1; ns . p <= s . p+1; ns . p++) { // next position +/- 1

59 if (!(0<=ns . p && ns . p<N)) continue ; // don’t move out of the shelf

60

61 swap (ns . b , ns . s [s . p]) ;

62 succ . push back (ns) ; // swap only before the step

63 swap (ns . b , ns . s [s . p]) ;

64

65 swap (ns . b , ns . s [ns . p]) ;

66 succ . push back (ns) ; // swap only after the step

67 swap (ns . b , ns . s [ns . p]) ;

68

69 swap (ns . b , ns . s [s . p]) ; swap (ns . b , ns . s [ns . p]) ;

70 succ . push back (ns) ; // swap before and after the step

71 swap (ns . b , ns . s [ns . p]) ; swap (ns . b , ns . s [s . p]) ;

72 }
73 // explore all new successor states

74 for (auto & ns : succ) {
75 if (M. f i nd (ns) == M. end ()) {
76 M[ns] = M[s] + 1 ;

77 Q. push (ns) ;

78 }
79 if (ns == ta rg e t) {
80 return M[s] + 1 ;

81 }
82 }
83 }
84 return �1;

85 }

5.2 Medium subtasks (subtasks 3 und 4): S = 0

1 // Library solution for S=0 in O(N^2)

2 // Score: 35

3 #inc lude ” l i b r a r y . h”

4 #inc lude <c s t d l i b>
5 #inc lude <vector>
6

7 using namespace std ;

8

9 long long int booksort (int N, int S , vector<int> order) {
10 long long int r e s u l t = 0 ;

11 vector<bool> covered (N�1, false) ;

12 for (int i =0; i<N; i++) {
13 r e s u l t += abs (i�order [i]) ; // Compute d(pi)

14 // Non-optimal linear sweep over the arc [i,order[i]]

15 for (int j=min (i , o rder [i]) ; j<max(i , order [i]) ; j++) {
16 covered [j] = true ;

17 }
18 }
19 int counter = 0 ;

20 for (int i =0; i<N�1; i++) {
21 if (! covered [i]) {
22 // [i,i+1] is in E’ if some uncovered edge follows

23 counter++;

24 } else {
25 r e s u l t += 2⇤ counter ;
26 counter = 0 ;

27 }
28 }
29 return r e s u l t ;

1-10

30 }

1 // Library solution for S=0 in O(N)

2 // Score: 50

3 #inc lude ” l i b r a r y . h”

4 #inc lude <c s t d l i b>
5 #inc lude <vector>
6

7 using namespace std ;

8

9 long long int booksort (int N, int S , vector<int> order) {
10 long long int r e s u l t = 0 ;

11 int r i g h t = 0 ;

12 vector<bool> covered (N�1, false) ;

13 for (int i =0; i<N; i++) {
14 r e s u l t += abs (i�order [i]) ; // Compute d(pi)

15 r i g h t = max(r ight , order [i]) ;

16 if (i<N�1 && r ight>i) covered [i] = true ;

17 }
18 int counter = 0 ;

19 for (int i =0; i<N�1; i++) {
20 if (! covered [i]) {
21 // [i,i+1] is in E’ if some uncovered edge follows

22 counter++;

23 } else {
24 r e s u l t += 2⇤ counter ;
25 counter = 0 ;

26 }
27 }
28 return r e s u l t ;

29 }

5.3 Hard subtasks (subtasks 5 und 6): S 6= 0

1 // Library solution for all S in O(N^2)

2 // Score: 70

3 #inc lude ” l i b r a r y . h”

4 #inc lude <c s t d l i b>
5 #inc lude <vector>
6 #inc lude <map>
7 #inc lude <iostream>
8

9 const int INFTY = 10000000;

10

11 using namespace std ;

12 using VI = vector<int>;

13

14 // Compute extend(l,r), initially assuming that the only

15 // cycles not checked yet are C[l] and C[r].

16 void extend (int &l , int &r , VI &C, VI &L , VI &R) {
17 // [ll, rr] is always the current extension ,

18 // while only [l,r] was already checked for

19 // further overlapping cycles.

20 int l l = l , r r = r ;

21 l l = min (l l , min (L [C[l]] , L [C[r]])) ;

22 r r = max(rr ,max(R[C[l]] , R[C[r]])) ;

23

24 while (l l <l | | r<r r) {
25 if (l l <l) {
26 l��;

27 l l = min (l l , L [C[l]]) ;

1-11

28 r r = max(rr ,R[C[l]]) ;

29 } else {
30 r++;

31 l l = min (l l , L [C[r]]) ;

32 r r = max(rr ,R[C[r]]) ;

33 }
34 }
35 }
36

37 // Compute the remaining cost of non-essentially connecting all the cycles

38 // if we already connected from S to [l,r].

39 long long int connect (int l , int r , VI &C, VI &L , VI &R, map<pair<int , int>, int> &Memo) {
40 extend (l , r ,C,L ,R) ;

41 // Memoization lookup: Did we compute it already?

42 if (Memo. f i nd ({ l , r }) != Memo. end ()) {
43 return Memo[{ l , r }] ;
44 }
45 // If we have to do something , try going one step to the left or to the right

46 // and then take the cheaper of the two.

47 int nl , nr ; // New interval [nl, nr]

48 long long int r e s = INFTY;

49 if (l >0) { // Extend to the left.

50 nl = l �1; nr = r ;

51 extend (nl , nr , C, L , R) ;

52 r e s = 2+connect (nl , nr , C, L , R, Memo) ;

53 }
54 if (r<C. s i z e ()�1) {
55 nl = l ; nr = r+1;

56 extend (nl , nr , C, L , R) ;

57 r e s = min (res ,2+ connect (nl , nr , C, L , R, Memo)) ;

58 }
59 Memo[{ l , r }] = r e s ;

60 return r e s ;

61 }
62

63 long long int booksort (int N, int S , vector<int> order) {
64 long long int dP = 0 ;

65

66 // For every slot i, determine its cycle C[i].

67 // For every cycle c, determine its interval [L[c], R[c]].

68 vector<int> C(N, �1) , L(N) , R(N) ;

69 int l = S , r = S ; // Compute the range that Mina needs to visit.

70 int c = 0 ; // Number of cycles of Pi.

71 for (int i =0; i<N; i++) {
72 dP += abs (i�order [i]) ; // Compute d(pi).

73 if (C[i] == �1) { // New cycle detected.

74 L [c] = i ; R[c] = i ; // Initialize its leftmost and rightmost slot

75 int j = i ;

76 do { // Loop over the cycle.

77 C[j] = c ;

78 R[c] = max(R[c] , j) ;

79 j = order [j] ;

80 } while (i != j) ;

81 if (i != order [i]) {
82 // If the cycle is non-trivial , it needs to be part of the

83 // range that Mina has to visit.

84 l = min (l , L [c]) ;

85 r = max(r ,R[c]) ;

86 }
87 c++; // Finished processing the cycle containing slot i.

88 }

1-12

89 }
90

91 // Use dynamic programming to compute the cost of connecting all cycles.

92 map<pair<int , int>, int> Memo;

93 Memo[{ l , r }] = 0 ; // If we reach the target we are done.

94 return dP+connect (S , S , C, L , R, Memo) ;

95 }

1 // Library solution for all S in O(N)

2 // Score: 100

3 #inc lude ” l i b r a r y . h”

4 #inc lude <c s t d l i b>
5 #inc lude <vector>
6 #inc lude <map>
7 #inc lude <iostream>
8 #inc lude <ca s s e r t>
9

10 using namespace std ;

11 using VI = vector<int>;

12

13 // Compute extend(l,r), initially assuming that the only

14 // cycles not checked yet are C[l] and C[r].

15 void extend (int &l , int &r , VI &C, VI &L , VI &R) {
16 // [ll, rr] is always the current extension ,

17 // while only [l,r] was already checked for

18 // further overlapping cycles.

19 int l l = l , r r = r ;

20 l l = min (l l , min (L [C[l]] , L [C[r]])) ;

21 r r = max(rr ,max(R[C[l]] , R[C[r]])) ;

22

23 while (l l <l | | r<r r) {
24 if (l l <l) {
25 l��;

26 l l = min (l l , L [C[l]]) ;

27 r r = max(rr ,R[C[l]]) ;

28 } else {
29 r++;

30 l l = min (l l , L [C[r]]) ;

31 r r = max(rr ,R[C[r]]) ;

32 }
33 }
34 }
35

36 // Compute the remaining cost of non-essentially connecting all the cycles

37 // if we already connected from S to [l,r] but need to go until we covered

38 // all of [target_l , target_r].

39 int connect (int l , int r , int t a r g e t l , int t a r g e t r , VI &C, VI &L , VI &R) {
40 int co s t = 0 ;

41

42 // Repeat as long as [l,r] != [target_l , target_r]

43 do {
44 extend (l , r ,C,L ,R) ;

45 // Compute whether there is a next S-including cycle C_l to the left of l

46 // and its reaching cost c_l.

47 bool nex t l = false ; // Does C_l exist?

48 int c o s t l = 0 ;

49 int l l=l , r l=r ; // Temporary interval [l_l, r_l].

50 while (true) {
51 if (l l <=t a r g e t l) break ;

52 l l ��;

53 c o s t l += 2 ;

1-13

54 extend (l l , r l ,C, L ,R) ;

55 if (r l>r) { // Detect extension on the other side.

56 nex t l = true ;

57 break ;

58 }
59 }
60 // Compute whether there is a next S-including cycle C_r to the right of r

61 // and its reaching cost c_r.

62 bool next r = false ; // Does C_r exist?

63 int c o s t r = 0 ;

64 int l r=l , r r=r ; // Temporary interval [l_r, r_r].

65 while (true) {
66 if (r r>=ta r g e t r) break ;

67 r r++;

68 c o s t r += 2 ;

69 extend (l r , r r ,C,L ,R) ;

70 if (l r<l) { // Detect extension on the other side.

71 next r = true ;

72 break ;

73 }
74 }
75 // Either there was an S-including cycle on both sides or on none.

76 a s s e r t (! (n e x t l ˆ nex t r)) ;

77 if (n e x t l && next r) { // We can extend on both sides.

78 co s t += min (c o s t l , c o s t r) ; // Take the cheaper of both options.

79 } else {
80 // If there are no more S-including cycles , then we have to

81 // walk the necessary non-essential steps on both sides.

82 co s t += c o s t l + c o s t r ;

83 }
84 // New interval [l,r] = extend(C_l \cup C_r).

85 l = min (l l , l r) ;

86 r = max(r l , r r) ;

87 } while (t a r g e t l<l | | r<t a r g e t r) ; // As long as Mina needs to explore more.

88 return co s t ;

89 }
90

91 long long int booksort (int N, int S , vector<int> order) {
92 long long int dP = 0 ;

93

94 // For every slot i, determine its cycle C[i].

95 // For every cycle c, determine its interval [L[c], R[c]].

96 vector<int> C(N, �1) , L(N) , R(N) ;

97 int l = S , r = S ; // Compute the range that Mina needs to visit.

98 int c = 0 ; // Number of cycles of Pi.

99 for (int i =0; i<N; i++) {
100 dP += abs (i�order [i]) ; // Compute d(pi).

101 if (C[i] == �1) { // New cycle detected.

102 L [c] = i ; R[c] = i ; // Initialize its leftmost and rightmost slot

103 int j = i ;

104 do { // Loop over the cycle.

105 C[j] = c ;

106 R[c] = max(R[c] , j) ;

107 j = order [j] ;

108 } while (i != j) ;

109 if (i != order [i]) {
110 // If the cycle is non-trivial , it needs to be part of the

111 // range that Mina has to visit.

112 l = min (l , L [c]) ;

113 r = max(r ,R[c]) ;

114 }

1-14

115 c++; // Finished processing the cycle containing slot i.

116 }
117 }
118 // Add up the number essential and non-essential steps needed.

119 return dP+connect (S , S , l , r , C, L , R) ;

120 }

1-15

