
International Olympiad in Informatics 2017
July 28 – August 4, 2017
Tehran, Iran
Editorials

simurgh
English (ISC)

Simurgh

Simplified Statement

Given a graph G with n vertices and m edges. Zal has selected a spanning tree of the
graph, but you do not know which edges appear in his spanning tree. In every query, you
can give him a spanning tree of the graph, and he will tell you how many edges your
spanning tree has in common with his. You wish to find his spanning tree with a small
number of queries.

Subtask 1

Iterate over all spanning trees and ask all of them.

Subtask 2

Start with an arbitrary spanning tree T and keep improving your solution as follows:

– Randomly choose an edge e.

– Add the edge to your solution.

– Remove a random edge from the cycle of t ∪ e to make it a tree T .

– If T has more edges in common with Zal's tree, then set T ← T

– Stop if T is Zal's tree.

Subtask 3

In this subtask we can make exactly one query per edge. Decompose your graph into a
number of disjoint (or almost disjoint) cycles. For each cycle C, find a tree T that connects
C to all vertices of the graph (C ∪ T is a spanning tree with an extra edge). For each
e ∈ C, determine the number of edges that C ∪ T e has in common with Zal's tree. If all of
these numbers are equal, then none of the edges of C appear in Zal's tree. Otherwise, the
edges whose removal decrease the number of the common edges are in Zal's tree.

′

′ ′

Subtask 4

One can determine with 3 queries whether an edge e appears in Zal's tree; it only suffices
to find 2 other edges that make a triangle together with e and do as mentioned earlier. Fix
an arbitrary tree T and find out which of its edges appear in Zal's tree. Once we find that,
for every forest F of G we can determine how many edges F shares with Zal's tree with a
single query: add some of the edges of T to F to make it a spanning tree, query that tree,
and determine how many edges of F are in common with Zal's tree. Determine the degree
of each vertex in Zal's tree with n queries. Then we can find the edge connected of each
leaf with log(n) queries and remove that edge from the solution. We continue with the new
edges.

Subtask 5

The solution is almost the same as the previous subtask. The only difference is that finding
a tree and determining which of its edges appear in Zal's tree is a bit harder. Roughly, we
need to remove the cut edges (which we know are included in Zal's tree). Then every
component is a 2-edge-connected graph and we can find an ear-decomposition for them.
Note that for every cycle C we can figure out with ∣C∣ queries which edges of C are in Zal's
tree. The only extension that we need to that is that if we already know the status of k
edges of C, we can do this with ∣C∣ + k − 1 queries. Therefore, we can solve the problem
for each component separately with at most 2n queries.

